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We present as dual processes the capping of closed triangulated polyhedra with 
apical atoms and the making of holes in such polyhedra either by puncture of 
the surface or by excision of atoms and their edges. These processes are shown 
to generate stable chemical species containing respectively less or more than 
2n +2 skeletal electrons. The former species are designated as electron-poor 
whereas the latter are called electron-rich. Pdlya's enumeration method is used 
to enumerate the distinct ways of capping and excising the closed, triangulated 
polyhedra to yield systems containing from four to twelve vertices. For the 
enumeration of cappings the appropriate cycle index is that of the dual of the 
polyhedron being capped, whilst for the enumeration of the excisions the cycle 
index is that of the polyhedron being excised. 
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1. Introduction 

Closed, triangulated, polyhedral systems having an atom located at each of the n 
vertices are represented by the cage boron hydrides, the carboranes, and certain 
metal clusters. Such species are now well-known to be particularly stable if they 
contain 2n + 2 skeletal electrons [1-51. In the present paper we propose a method 
for the enumeration of polyhedral systems containing more than 2n + 2 skeletal 
electrons, which we term "electron-rich", as well as one for polyhedral systems 
containing less than 2n + 2 skeletal electrons, which we term "electron-poor". 

The electron-rich polyhedral systems have already been discussed in some detail 
in the literature, particularly in the case of the boron hydride derivatives [1, 3, 4]. 
In fact, there are now well-established families of niclo compounds with 2n+4 
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skeletal electrons, and of arachno compounds with 2n+6 skeletal electrons. If, 
in accordance with previous treatments [6], one considers only triangular faces to 
be closed faces, then nido compounds contain by definition one hole or non- 
triangular face. Arachno compounds, on the other hand, contain either two holes 
or one large bent hole. On this basis it may therefore be seen that the addition of 
electrons to a closed 2n + 2 triangulated polyhedron results in successive puncture 
of the surface to give holes with more than three edges. Alternatively viewed, the 
open polyhedral networks could arise from closed polyhedra by the excision of one 
or more vertices together with the edges terminating on them. 

The properties of electron-poor polyhedral systems have been discussed by us in a 
recent paper [5]. Representatives of this class of compounds, which are much 
rarer than their electron-rich counterparts, may be considered either as triangu- 
lated polyhedra with one or more capped faces or as polyhedra containing tetra- 
hedral chambers. Two actual examples of electron-poor polyhedral systems are the 
bicapped tetrahedral Os6(CO)l 8 (Ref. [7]) and the capped octahedral RhT(CO)I 3 6 
(Ref. [8]), both of which contain 2n skeletal electrons. 

In Table 1 we list certain closed, triangulated polyhedra having from four to twelve 
vertices. For the polyhedra containing seven, eight, ten, and eleven vertices two 
alternative closed polyhedra having differing symmetry elements are listed. 1 In 
each of these cases one of the polyhedra is found in cage boron hydrides and car- 
boranes whilst the other is not. In the polyhedra with 7, 8, 10, and l ] vertices the 
unfavored polyhedra with n vertices can all be partitioned into a tetrahedron and a 
smaller, closed, triangulated polyhedron with n - 1 vertices. 

2. Enumeration of Capped and Excised Polyhedra 

It has been shown [5] that complementary processes may be generated for the 
conversion of closed, triangulated polyhedra with n vertices, which require 2n + 2 
skeletal electrons, into polyhedra characteristic of systems with either a larger or 
smaller number of skeletal electrons. For those systems having a larger number of 
skeletal electrons (2n + 4 or greater), the appropriate process can be viewed either 
as polyhedral puncture in which holes, i.e. faces with more than three edges, are 
made resulting in the generation of new bonding orbitals but no additional 
electrons, or as polyhedral excision in which vertices together with all of their 
edges are removed so that more electrons are removed than bonding orbitals. We 
now demonstrate that the enumeration of possibilities for polyhedral excision and 
polyhedral capping by means of P61ya's Enumeration Theorem [10, 12] actually 
represent dual problems. 

We consider first the enumeration of polyhedral excisions, starting from a closed, 
triangulated polyhedron with n vertices. The number of distinct nido systems that 
may be generated by excising one vertex from this polyhedron is equal to the num- 
ber of orbits in this polyhedron. Similarly, the number of arachno systems that 

1 The enumeration of all polyhedra, even just those with triangular faces is a complex problem [9]. 
Table 1 is not exhaustive and contains only those with obvious symmetry elements. 
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Table 1. Some triangulated polyhedra and their duals 
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Polyhedron Point No. elements b Types of Found Dual polyhedron 
group a v e t vertices b in boron Name c v 

J3 J4 J5 .16 cages 
e f 

Tetrahedron Ta/T 4 6 4 4 0 0 0 No Tetrahedron 4 6 4 
Trigonal D3h/D 3 5 9 6 2 3 0 0 Yes Trigonal 6 9 5 
bipyramid prism 
Octahedron OjO 6 12 8 0 6 0 0 Yes Cube 8 12 6 
Pentagonal Dsh/D5 7 15 10 0 5 2 0 Yes Pentagonal i0 15 7 
bipyramid prism 
Capped C3jC 3 7 15 10 1 3 3 0 No 10 15 7 
octahedron 
D2d O2d/D2 8 18 12 0 4 4 0 Yes 12 18 8 
dodecahedron 
Bicapped D3a/D 3 8 18 12 2 0 6 0 No 12 18 8 
octahedron 
4,4,4-Tricapped DajD 3 9 21 14 0 3 6 0 Yes 14 21 9 
trigonal prism 
4,4-Bicapped D4a/D 4 10 24 16 0 2 8 0 Yes 16 24 10 
square antiprism 
3,3,4,4-Tetra- C3v/C a 10 24 16 1 3 3 3 No 16 24 10 
capped trigonal 
prism 
BxlH~- C2jC z 11 27 18 0 2 8 1 Yes 18 27 11 
polyhedron 
Pentacapped D3jD 3 11 27 18 2 3 0 6 No 18 27 11 
trigonal prism 
Icosahedron I j I  12 30 20 0 0 12 0 Yes Pentagonal 20 30 12 

dodecahedron 

" The first point group listed is the full point group. The second point group listed is the subgroup of the 
full point group consisting only of the proper rotations. 

b The symbol v refers to the number of vertices, e to the number of edges, t to the number of triangular 
faces,f to the number of faces of any type, and j,, to the number of vertices of degree n. See: King, R. B. : 
J. Am. Chem. Soc. 91,7211 (1969). 

c Only relatively familiar names for the dual polyhedra have been included. 

may  be generated by excising two vertices f rom this po lyhedron  may  be deter- 

mined  by rout ine  appl ica t ion  o f  Pdlya 's  method .  The  enumera t ion  o f  double  

excisions is ma themat ica l ly  ident ical  to the cor responding  enumera t ion  o f  disub- 

st i tuted isomers. Fu r the rmore ,  for systems with m o r e  than two holes ana logous  

compu ta t i ona l  me thods  may  be applied. F o r  all o f  these enumera t ions  the appro-  
priate cycle index is that  o f  the permuta t ions  o f  the vertices o f  the polyhedron.  

Enumera t i on  o f  po lyhedra l  capping  can be considered analogously.  Start ing again 

f rom a closed, t r iangula ted  po lyhed ron  with n vertices, it is evident  that  the 

n u m b e r  o f  dist inct  systems that  can be genera ted  by capping one face is equal  to 

the n u m b e r  o f  face orbits,  i.e. the number  o f  non-equ iva len t  faces, in the poly-  

hedron.  The  n u m b e r  o f  b icapped systems can also be obta ined  using Pdlya 's  

T h e o r e m  [10, 12]. This time, however ,  the appropr ia te  cycle index is that  o f  the 
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permutations of the midpoints of the faces of the polyhedron. This index turns out 
to be identical to that for the permutations of the vertices of the dual polyhedron. 
Thus, the number of bicapped systems is the same as the number of disubstituted 
isomers of the dual polyhedron. In this sense, therefore, polyhedral excision and 
polyhedral capping may be seen to be dual operations, appropriate respectively to 
electron-rich and electron-poor systems. 

3. The Counting Polynomials 

We have evaluated the counting polynomials corresponding to the excised, 
triangulated polyhedra having from four to twelve vertices. The relevant cycle 
indices for the triangulated polyhedra, several of which have already been 
reported [11, 12], are given in Table 2. In order to differentiate between mirror 

Table 2. Cycle indices for triangulated polyhedra and their duals 

Polyhedron Point Cycle index Cycle index of dual 
group 

Tetrahedron T x 4 1 1 2 T 2 (  X i -}- 8 X i  X3 + 3 X 2 )  

Tetrahedron T d 1 4- 1 1 2 ~(X l -t- 8XtX 3 + 3X 2 + 6x2x12 + 6x]) 
Trigonal D 3  i 5 2 I 1 2 g(X i + 2XlX 3 + 3XiX2) 
bipyramid 
Trigonal D3 h 1 5 2 1 1 2 3 1 T ~ ( X l  + 2 X l X  3 + 3 X a X  2 + 4 X l X  2 

bipyramid + 2x~x~) 
Octahedron O 1 6 2 2 2 2~(xl + 8x s + 3xix 2 + 6x~ + 6x~xl) 
Octahedron O h 4~(x 6 + 8x~ + 3 2 1 2 2 7 X  2 + 6xlx4- + 9 X i X  2 

1 4- 1 1 1 
-~ 8 X  6 + 3 X l X  2 + 6X2X4-) 

Pentagonal D5 ~ 0 ( X  7 2 1 1 3 + 4x lx  5 + 5XlX 2) 
bipyramid 
Pentagonal D5 h 1 7 2 1 1 3 T6(xi + 4 x a x s + 5 x l x  z + x l x  2 5  1 
bipyramid + 4x12x~ + 5x~ x 2) 

Z(x, + 3x 4) D2 d D2 1 8 

dodecahedron 
g(x 1 + 3x~ + 2x~x~ + 2x~) D2 a D2 a 1 8 

dodecahedron 
4,4,4-Tricapped D 3 1 9 ~(~ + 2~ + 3xlx'~) 
trigonal prism 
4,4,4-Tricapped D3h 1A~(xl + 2x3 + 3xlx2 + 4xlx2 
trigonal prism + 2 x 3 x 6 )  

4,4-Bicapped D4- 1 10 2 2 2 4- 5 g(xa + 2xlx4- + xxx z + 4X2) 
square antiprism 
4,4-Bicapped D4- a 1 10 2 2 2 4 5 T N (X i  + 2 X 1 X  4 + XIX 2 + 4x z 
square antiprism + 4x~x~ + 4x~x 3) 
BIIH~- C2 1 11 1 5 i (x l  +x lx2)  
polyhedron 
Bl iH~-  C2 O 1 Ii 1 5 3 4- 5 3 ~ (X  1 -}- XlX  2 -~- X lX  2 -]- X I X 2 )  

polyhedron 
lcosahedron I 6%(xI 2 + 24x~x~ + 20x~ + 15x 6) 
Icosahedron Ih 7rg(xxl x 2 + 24xlx 522 + 20x~ + 16x~ 

+ 24x~,xlo+ 20x~ + 15x~x~) 

Self-dual 
Self-dual 
1 6 2 + 3X~) g(X 1 + 2x 3 

1 6 2 3 1 2 2 
T~(XI  + 2 X  3 -b 4 X  2 + 2 X  6 + 3 X l X 2 )  

1 8 2 4 2 2 ~ ( x l  + 6x 4 + 9x 2 + 8xlx3) 
1 8 4 2 2 2 ~(X 1 + 1 3X 2 + 1 2X 4 + 8XlX 3 

+ 8x~4 + 6~x~) 
1 10 2 5 ~ ( x l  +4x5 +5x2) 

1 10 2 5 1 gg(xl + 4xs + 6x2 + 4Xl 0 + 5x~ x4) 

~x12 + 3x~) 

1 12 3 6 g(X 1 + 2X 4 + 3X 2 + 2x2x~) 

1 14 2 4 7 g(X 1 + 2XlX 3 + 3X2) 

1 14 2 4 7 6 4 aS-(xt + 2xix a + 3X 2 + XlX 2 
1 2 1 4 5 

+ 2X2X3X 6 + 3 X l X  2)  
I 16 4 8 2 7 g(xl + 2x 4 + x 2 + 4xlx  2) 

i 16 4 8 4 - 6  2 7g(x 1 + 2x4- + x 2 + 8xlx  2 + 4xs) 

1 18 9 
~ ( X  1 ~ - X 2 )  

I 18 9 2 8 4 7 
x(X1 4.- X2"~- XlX2Jr  XlX2) 

1 20  4 2 6 10 6~(x~ +24x~+20xxx3+ 15x z ) 
1~ 20 4 2 6 10 (Xl + 24x 5 + 20xlx a + 16x 2 

2 1 3 + 24Xl o + 20x2x6 + 15x41x 8) 
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image enantiomers and between geometrically different isomers, the cycle indices 
for both the full point groups and the proper rotation subgroups of the relevant 
triangulated polyhedra are also given in Table 2. The counting polynomials for the 
excisions are to be found in Table 3. In these polynomials, derived from the full 
point group of a triangulated polyhedron with n vertices, the coefficients of x 
correspond to the number of possible non-equivalent nido structures with n -  1 
vertices; the coefficients o fx  2 correspond to the number of non-equivalent arachno 
structures with n -  2 vertices. Comparison of the coefficients of the x and x 2 terms 
of a counting polynomial using the full point group and the proper rotation sub- 
group of a polyhedron on n vertices, allows one to identify the respective numbers 
of nido and arachno polyhedra (with respectively n - 1 and n -  2 vertices) which 
exist in pairs of distinguishable enantiomers because of the lack of a plane of 
symmetry or other improper rotation axis. 

Interpretation of the coefficients of the higher powers of x in the counting poly- 
nomials derived from the cycle indices eventually runs into difficulties. As the 
number of possible species obtained by multiple excisions increases, problems 
arise in cases where either disconnected polyhedra are obtained or two non- 
equivalent excision sequences lead to the same highly open system. Such diffi- 
culties clearly do not occur with the single (x terms) and double (x 2 terms) excisions, 
which lead to the chemically significant nido and arachno species. In the present 
work our attention is focused mainly on the single and double excisions. 

We have also evaluated the counting polynomials corresponding to the capped 
triangulated polyhedra with four to twelve vertices. Again, the relevant cycle 
indices for the duals of the triangulated polyhedra are given in Table 2. The 
counting polynomials for the cappings are presented in Table 3. In this latter case, 
there is no difficulty in interpreting the coefficients of the x m terms in the counting 
polynomial derived from the full symmetry point group of the dual of a triangu- 
lated polyhedron on n vertices. These coefficients represent simply the number of 
different systems that can be obtained by capping rn triangular faces. Moreover, 
comparison of the coefficients of the x" terms of the counting polynomial of the 
dual of a given triangulated polyhedron when either the full symmetry point group 
or the pure rotation subgroup thereof is used allows the determination of the 
numbers of systems with m caps that exist as pairs of distinguishable mirror image 
enantiomers because of the lack of a reflection plane or other improper axis. 

4. The Electron Counts 

There are some limitations to the apparent duality of excision and capping in 
triangulated polyhedra. For example, there is a subtle difference between the 
effects of these two operations on the precise electron count required for the cluster. 
If an excision of a polyhedron with n + 1 vertices is viewed as equivalent to puncture 
of a polyhedron with n vertices (as it is), then this puncture will generate precisely 
one new bonding orbital which will hold precisely two additional electrons. Thus, 
as discussed above, each puncture will generate the need for exactly two additional 
electrons to fill up all of the bonding orbitals. There will therefore be an orderly 
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Table  3. Coun t ing  po lynomia l s  for  t r i angula ted  po lyhe d ra  and  their  duals  

Po lyhedron  Point  Coun t ing  po lynomia l  for Coun t ing  po lynomia l  for  

g roup  excisions cappings  

T e t r a h e d r o n  T 1 + x + x 2 4. x 3 + x 4 

T e t r a h e d r o n  T e 1 4. x 4. x 2 4. x 3 4, x 4 

Tr igona l  D 3 1 + 2x + 3x 2 + 3x 34, 2x 44, x 5 

b i p y r a m i d  

Tr igona l  D 3h l + 2x + 3xa + 3x3 + 2x~ + x 5 

b i p y r a m i d  
O c t a h e d r o n  O 1 4 . x 4 , 2 x a 4 . 2 x 3 4 . 2 x 4 4 , x S + x 6  

O c t a h e d r o n  O h l + x + 2xZ + 2x3 + 2x~* + xS + x 6 

Pen tagona l  D 5 1 4, 2x 4, 4x  z 4. 5x 3 4. 5x 4 4, 4x  5 

b ipy ram i d  + 2x 6 + x 7 

Pen tagona l  D sh 1 4- 2x  4, 4 x  2 4. 5x  3 4. 5x 4 4, 4x  5 

b i p y r a m i d  + 2x 6 4, x 7 

Daa D2 l + 2 x + l O x Z 4 . 1 4 x 3 + 2 2 x 4 + 1 4 x  5 

d o d e c a h e d r o n  4, 10x 6 + 2x 7 4. x 8 

D2a D2d 1 4 . 2 x 4 . 7 x 2 4 , l O x 3 4 , 1 5 x 4 4 . 1 0 x 5  
d o d e c a h e d r o n  + 7x 6 4. 2x 7 + x s 

4 ,4 ,4-Tr icapped D 3 

t r igonal  p r i sm 

4 ,4 ,4-Tr icapped D3h 
t r igonal  p r i sm 

4,4-Bicapped D 4 

square  an t ip r i sm 

4,4-Bicapped D4a 

square  an t ip r i sm 

B l l H ~ l  Ca 

po lyhedron  

polyhedron 

1 4" 2x  4" 8x  z 4" 17x a 4" 24x ~ 4" 24x 5 

4" 17x 6 4" 8x 7 4" 2x 8 + x 9 

1 4" 2x  4" 6X 2 4" 12x 3 4" 16X 4 4" 16X 5 

4- 12X6 4"6X7 4" 2Xs 4, X9 

1 + 2x + 9X 2 4" 16x 3 4" 33x 4 + 34X 5 

4" 33x 6 4" 16X 7 4" 9X s 4" 2x 9 4" x 1 o 

1 4" 2x 4" 7x 2 4" 12x 3 4" 22x 4 4" 23x s 

4" 22x 6 4" 12x 7 4" 7X s 4" 2x 9 4" x 1 o 

1 + 6x 4" 30x a + 85x 3 + 170x 4 

4" 236x 5 + 236x 6 4" 170x 7 4. 85x 8 

4, 30x9 4 .6xa~ + x  ~ 

1 4" 5x  4" 20x  z 4" 52x 3 4" 99x 4 4" 108x 5 

4" 108x 6 4" 99x 7 4" 52X s 4" 20x 9 

+ 5 x l ~  

1 4 . x 4 . x 2 4 , x 3 4 . x 4  
14"X4"X24"X34"X4 

14. x 4,4x2 4.4x3 4,4x4 4, xS 4. x6 

1 4 . x 4 . 3 x 2 4 , 3 x 3 4 . 3 x 4 4 . x S + x 6  

l + x + 3x2 + 3x3 + 7x'* + 3xS + 3x 6 
+ x 7 + x  8 

l + x + 3x2 + 3x3 + 6x4 + 3x5 + 3x  6 
+ x 7 4 - x  8 

1 + x +  7x2 + 12x 3 + 26x4 + 26x 5 

+ 26x 6 + 12x 7 + 7x s + x 9 + x 1 o 

1 + x + 5 x 2 + 8 x 3 +  16x4+  16x 5 

+ 1 6 x 6 + 8 x V  + 5 x S + x 9 + x  a~ 

1 + 3x + 21 x 2 + 55x 3 4, 135x 4 

+ 198x 5 4. 246x 6 + 198x 7 4. 135x s 

4, 55x 9 4, 21x 1~ 4, 3x 11 q-x a 2 

1 + 2x  + 12x z 4. 30x 3 + 72x 4 + 104x 5 

4, 128x 6 4. 104x 7 + 72x 8 4. 30x 9 

+ 1 2 x  I ~  1 1 + x  xz 

1 4. 3x4.  19xZ4.62x34.  180x 4 

+ 335x 5 + 520x 6 4, 576x 7 4, 520x s 

+ 335x 9 + 180x 1~ 4. 62x ~ 1 + 19xlZ 
4 , 3 x 1 3 + x  14 

1 + 3 x +  14xZ+41x3 + 107x 4 

+ 193x 5 + 292x 6 + 322x 74- 292x s 

4, 193x9 4. 1 0 7 x l ~  4, 14x a2 
+ 3 x 1 3 + x  TM 

1 + 3x + 20x 2 + 77x 3 + 246x 4 

+ 567x s + 1036x 6 + 1465x 7 

+ 1654x 8 + 1465x 9 + 1036x 1~ 

+ 567x 11 + 246x 12 + 77x ~ 3 

4, 20x14 + 3x15 + x  16 

1 4. 3x4,13x2 4.49x3 4.142x 4 

+ 315x ~ + 562x 6 + 785x 7 4. 885x 8 

+ 785x 9 4. 562x ~ o 4- 315x 11 

+ 142xlZ 4,49x13 4.13x~4 + 3 x  x5 
4 .X  16 

1 + 9x + 81 x 2 + 408x 3 + 1548x 4 

4. 4284x 5 4. 9324x 6 + 15912x 7 

+ 21942x s + 21879x 9 4. 21942x 1~ 

+ 1 5 9 1 2 x l l + 9 3 2 4 x l Z + 4 2 8 4 x  13 
+ 1548xX4+408x154.81x16 

4.9x~7 4,x~8 

1 4. 6x  4, 46x  z 4. 216x 3 4. 799x 4 

+ 2184x 5 4. 4725x 6 4, 8040x 7 

+ 11069x 8 + 12260x 9 + 11069x 1~ 

+ 8040x 11 4.4725x12 +218413 

4. 799x 14 4. 216x 15 4. 46x 16 4. 6x 17 
4 .x  18 
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Polyhedron Point Counting polynomial for Counting polynomial for 
group excisions cappings 

Icosahedron I l + x + 3 x 2 + 5 x 3 + 1 2 x 4 + 1 4 x  s 1 + x + 6 x 2 + 2 1 x a + 9 6 x 4 + 2 6 2 x 5  
+ 2 4 x 6 + 1 4 x V + 1 2 x S + 5 x 9 + 3 x  1~ +681x6+1302xT+2157x  s 

+ x l l + x  12 +2806X9+3158xIO+2806X 11 

+2157X~2+1302Xa3+681X 14 
+262XIS+96XI6+21xlV+6x18 

+ x l 9 @ x  20 

l + x + 5 x Z + 1 5 x 3 + 5 8 x 4 + 1 4 9 x 5  
+371x6+693xV+l135x  8 
+ 1466xg+1648xl~  11 
+ l135xi2+693x13+371x  14 
+149x lS+58x16+15x lV+5x~8  

+ X  19 + X  20 

Icosahedron 1 + x + 3 x 2 + 5 x 3 +  10x4+ 12x 5 
+ 18x6+ 12xV+ l O x S + 5 x g + 3 x  I~ 

+ x  11 .t_x 12 

progression from 2n+2 to 2n+4, 2n+6, etc. skeletal electrons as additional 
punctures are performed. However, the effect of capping on the number of elec- 
trons required for the capped polyhedron cannot be precisely defined since it 
depends upon the number of electrons donated by the cap. Thus, in Os6(CO)I8 
each Os(CO)a cap donates two electrons (i.e. 8 electrons from the osmium less the 
six electrons required for the three non-bonding lone pairs) whereas in Rh7(CO)36 
the Rh(CO)a cap donates three electrons (i.e. 9 electrons from the rhodium less the 
six electrons for the three non-bonding lone pairs). Consequently, there is no 
orderly progression of 2n + 2 to 2n, 2 n -  2, etc. skeletal electrons as the successive 
cappings are performed. 

Another point to consider is that successive punctures or cappings lead to increased 
localization of the bonding in the cluster compounds. Each puncture splits the 
multi-center delocalized core molecular orbitals in the clusters into two molecular 
orbitals: one still in the core and one above the hole. This results in an increasing 
localization of the system. Similarly, addition of each cap increases the amount of 
the cluster that is contained in localized tetrahedra rather than delocalized larger 
polyhedra. Thus, excessive usage of either punctures or capping will lead to more 
localized systems that may lose many of the interesting properties, including the 
relatively high stability, characteristic of many of the closed triangulated poly- 
hedral clusters containing 2n + 2 skeletal electrons. For this reason we believe that 
systems with large numbers of holes or caps are not well suited for treatment as 
perturbations on the closed triangulated polyhedra. 
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